

Expanding its HDL strategy into Immuno-oncology and Chemotherapeutic drug delivery

Acquisition of LYPRO Biosciences

November 2017

- Over a decade of experience in HDL biology and pharmacology
- Scalable manufacturing expertise
- Broad patent estate coverage

Cerenis Acquisition of LYPRO Biosciences' Assets

Made up of CERENIS' apoA-I, and in the form of an HDL particle, LYPRO's Nanodisk[®] could be the perfect drug carrier

- ApoA-I, the constitutive protein of HDL, is perfectly biocompatible and tolerated by the human body
- ApoA-1 has an adaptive structure allowing for different drugs to be loaded in an HDL
- Being recognized by numerous receptors, present on the cells' membranes, HDL are able to selectively carry active drugs to a wide-range of tissues

LYPRO in a nutshell

- A California-based company with a revolutionary proprietary drug technology called Nanodisk[®]
- Nanodisk[®] are self-assembling, targetable, nanometer-scale HDL-like bioparticles able to encapsulate active drugs
- LYPRO's preclinical work has demonstrated that lipid structures, such as HDL, could be ideal delivery agent

COMBINATION OF THESE TWO TECHNOLOGIES CREATES A DISRUPTIVE DRUG DELIVERY TECHNOLOGY

Cerenis Targeted drug delivery nanotechnologies associated with HDL therapy have strong potential in a wide range of indications

Immuno-oncology	Targeted chemotherapeutic drug delivery	Infectious diseases	Metabolic diseases
• Antibodies	• Antibody-drug conjugates (ADC)	Of which:	
• Cancer vaccines	\$14 billion by 2021	Antifungals \$12 billion by 2025*	Market size: \$45 billion
•Immune checkpoint inhibitors	• Anti-sense oligonucleotides and RNAi \$4,6 billion by	• Antibiotics \$57 billion by 2024*	Only for Type 2 Diabetes by 2020*
Market size:	2022*	Market size:	
\$100 billion		\$190 billion by 2025**	
	* Research and Markets (Avril 2017) ** Grand view research (July 2015)	* Grand view research (October 2016) **Research and Markets (November 2016)	*NovaTarg Therapeutics

IN THE SHORT TERM CERENIS WILL FOCUS ON ONCOLOGY

Cerenis HDL particles are perfect delivery vehicles able to selectively bring cell killing agents to cancer cells

HDL'S BIOLOGICAL FEATURES SUPPORT THE SAFETY PROFILE OF THE TECHNOLOGY

Cerenis SR-BI receptors play a key role in cancer cell proliferation

- Melanoma can be an aggressive and fatal form of skin cancer with the prevalence rising significantly over the last decade
- Once the disease is metastatic patients have a very poor prognosis
- Melanoma patients with high SR-BI expression, displayed a significantly earlier time of tumor reoccurence compared to patients with low SR-BI expression (A). In addition patients with high SR-BI have a significant poorer outcome (C)

* Mikula et al.* (Medical University Vienna, Austria) : Mol Cancer Res. 2017 Oct 3. pii: molcanres.0292.2017. doi: 10.1158/1541-7786.MCR-17-0292.

Cerenis Targeting SR-BI receptors, HDL containing Doxurobicin is a powerful anti-cancer agent

SARCOMA CELLS EXPRESSING SR-B1 ARE MORE SUSCEPTIBLE TO CELL DEATH THAN THOSE WHICH DO NOT OVEREXPRESS SR-BI

ApoA-I with its flexible structure, is a key asset to accomodate different drug loads and target different tissues

ApoA-1 multimeric structure (2-6nm)

Discoidal HDL (7-9nm)

- The ability of monomeric apoA-I to form multimeric structures , offers the opportunity to have a carrier with adaptive capacity and a different pace of release as number of subunits increase.
- The small size of monomeric or multimeric apoA-I allows to penetrate the blood brain barrier as well as the lymph compartment.
- Cerenis delivery vehicles take advantage of the wide distribution of HDL/apoA-I receptors (SR-B1 / ABCA1/ABCG1) in tissues.

Cerenis[™] HDL particles have strong advantages over existing drug delivery technologies

	HDL particles	
Safety and efficacy 🗸	Natural structure stabilized by apolipoproteins, particularly apolipoprotein A-I (apo A-I) and uniquely capable of delivery of biologically active molecules to tissues and circulating cell in humans.	
Biocompatibility 🗸	Once the load is delivered, the remaining apoA-I is rapidly and safely integrated in the natural lipoprotein metabolism pathways leading to no accumulation of empty carrier.	
Strong ability to target specific cells \checkmark	HDL particles are recognized by the SR-B1 receptor expressed on cancer cells' surface. The receptor-mediated uptake of the payload, enable delivery of the drug carried in the core of the HDL particle.	
Adaptive structure 🗸	ApoA-I is flexibly and adaptive, from lipid-poor apoA-I, to discoida and large spherical particles, allowing different types and quantitie of drug payloads for different applications in cancer chemotherap and antigen carrying immuno-oncologic applications.	
Proprietary manufacturing process	Cerenis owns the right to an exclusive, validated, and scalable manufacturing process to produce apoA-I, apoA-I peptides and HDL on an industrial scale.	
Indications 🗸	Cerenis unique and broad IP covers composition of matter and methods of use (indications).	

HDL PARTICLES ARE NATURAL MOLECULE CARRIERS READILY DELIVERED TO TISSUES AND CIRCULATING CELLS

Cerenis holds the proprietary manufacturing process for natural recombinant human apoA-I and HDL particles

- Manufacturing costs that will lead to substantial savings at scale-up
- An economically-viable HDL manufacturing process

NO COMPETITOR CAN REPRODUCE THE CHARGED APOA-I CONTAINING NANOPARTICLE

Cerenis New strategic markets and value-creation prospects

